Determinants of QOL and Psychiatric Comorbidity in Epilepsy In Children

Mary Lou Smith, PhD

Every child deserves a healthy start, a strong mind, and a bright future.
Faculty/Presenter Disclosure
Mary Lou Smith

- Relationships with commercial interests: none
- Speakers Bureau/Honoraria: none
- Consulting Fees: none
- Other: none
- Disclosure of Commercial Support: n/a
- Mitigating Potential Bias: n/a
Overview / Objectives

- Review identified risk factors for poor QOL in children with epilepsy

- For *young children*, review outcomes of treatment for epilepsy on QOL, behaviour and cognitive development
HRQL: A BROAD, MULTI-DIMENSIONAL CONSTRUCT
Risk Factors Associated with HRQL

Clinical
- Duration of epilepsy
- Seizure frequency
- Seizure type
- Seizure severity
- AEDs
- Presence of a comorbidity

Psychosocial
- Parental anxiety
- Socioeconomic status
- Behaviour problems*
- Cognitive problems*

*Ferro, 2014
Two Canadian Multi-Centre Studies
Canadian Pediatric Epilepsy Network (CPEN)

Health Related Quality of Life in Children with Epilepsy Study
- HERQULES
- Kathy Speechley

Pediatric Epilepsy Surgery and Quality of Life
- PEPSQOL
- Elysa Widjaja and Mary Lou Smith
HERQULES
N= 374, new onset, age 4-18

- Epilepsy Variables
- Family Environment
 - Satisfaction with family relations
 - Resources to aid family adaptation to stressful events
 - Family stress in past year
 - Parental depression
- Comorbidities
 - Behaviour
 - Cognition
HERQULES – Two Year Outcomes

Speechley 2012
HERQULES:
Predictors of Improved QOL over Time

- Absence of cognitive problems
- Fewer AEDs
- Higher family functioning
- Fewer family demands

- Predicted QOL closely tied to cognitive status at baseline
- Cognitive problems may be the “driving force” behind declining QOL over 2 years
PEPSQOL Model of Impact of Surgical and Medical Treatment on HRQL

GOAL OF MANAGEMENT OF EPILEPSY

- **Treatment:** Surgical vs Medical
 - Baseline Predictors: Baseline HRQL, Baseline patient factors, Baseline family factors
 - Moderating Factors: Patient Factors, Family Factors
 - Patient Factors: Mood (anxiety & depression), Self-Concept
 - Family Factors: Caregivers’ Mood (anxiety & depression), Family Adaptation, Family Resources, Family Demands
 - Mediating Factor: Clinical Factor: Seizure Control
 - HRQL: Time 0, Time 1, Time 2, Time 3, Time 4

Legend:
- Time 0 = Baseline
- Time 1 = 6 months follow-up
- Time 2 = 12 months follow-up
- Time 3 = 18 months follow-up
- Time 4 = 24 months follow-up
PEPSQOL Baseline Predictors of QOL
N= 115, Medically Refractory, Age 4-18

<table>
<thead>
<tr>
<th>Univariable Models</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Child Characteristics</td>
<td>Seizure frequency</td>
</tr>
<tr>
<td></td>
<td>Number of AEDs</td>
</tr>
<tr>
<td></td>
<td>IQ</td>
</tr>
<tr>
<td>Caregiver Characteristics</td>
<td>Depressive symptoms</td>
</tr>
<tr>
<td></td>
<td>Anxiety symptoms</td>
</tr>
<tr>
<td></td>
<td>Work status</td>
</tr>
<tr>
<td>Family Characteristics</td>
<td>Adaptation</td>
</tr>
<tr>
<td></td>
<td>Resources</td>
</tr>
<tr>
<td></td>
<td>Demands</td>
</tr>
</tbody>
</table>

Conway 2016
PEPSQOL Baseline Predictors of QOL

N= 115, Medically Refractory, Age 4-18

<table>
<thead>
<tr>
<th>Univariable Models</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Child Characteristics</td>
<td>Seizure frequency</td>
</tr>
<tr>
<td></td>
<td>Number of AEDs</td>
</tr>
<tr>
<td></td>
<td>IQ</td>
</tr>
<tr>
<td>Caregiver Characteristics</td>
<td>Depressive symptoms</td>
</tr>
<tr>
<td></td>
<td>Anxiety symptoms</td>
</tr>
<tr>
<td></td>
<td>Work status</td>
</tr>
<tr>
<td>Family Characteristics</td>
<td>Adaptation</td>
</tr>
<tr>
<td></td>
<td>Resources</td>
</tr>
<tr>
<td></td>
<td>Demands</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multivariable Models</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Child Characteristics</td>
<td>IQ</td>
</tr>
<tr>
<td>Caregiver Characteristics</td>
<td>Work Status</td>
</tr>
<tr>
<td>Family Characteristics</td>
<td>Resources</td>
</tr>
</tbody>
</table>

Conway 2016
Important Take-Home Message

- There are modifiable family and child factors predictive of QOL
- If we recognize and treat those factors, we can improve QOL
Prevalence of Cognitive Comorbidities

- Intelligence
 - Intellectual disability - 25-40 %
 - Mild or subtle intellectual deficits - 30%

- Learning disabilities / Academic problems
 - 70 % - low achievement
 - 40 % - underachievement
ADHD

- Most common psychiatric disorder in pre-school and school-aged children with epilepsy
- Clinic samples: 14-38%
- Predominantly inattentive subtype

Predictors:
- Underlying brain dysfunction
- Frequent seizures / epileptiform discharges
- AED side effects
- Other psychiatric disorders

Not predictive:
- Sex
- Seizure type
- Seizure localization

Treatment: medication

Besag et al., Epileptic Disord, 2016, 18 (Suppl 1), S8-S15
Psychiatric Comorbidities: Depression and Anxiety

Prevalence

<table>
<thead>
<tr>
<th>Type of Study</th>
<th>Anxiety</th>
<th>Depression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>5 – 17 %</td>
<td>7 – 13 %</td>
</tr>
<tr>
<td>Clinic</td>
<td>16 – 48 %</td>
<td>10 – 37 %</td>
</tr>
</tbody>
</table>

Most of these cases had NOT been diagnosed prior to study

Risk Factors

- **Predictive:**
 - Lower IQ
 - Language/cognitive deficits
 - Drug-resistant seizures
 - Family variables

- **NOT Predictive:**
 - Age of onset, seizure type, syndrome

Treatment: Medication, CBT, Community Support Groups, Camps

Dunn et al., 2016, Epileptic Disord., 18 (Suppl 1), S24-S30
Risk Factors for Autism in Epilepsy

- Symptomatic epilepsy
- Seizure onset ≤ 1 year
- Early encephalopathic epilepsy
 - West syndrome
 - Dravet syndrome
 - Tuberous sclerosis

Nabbout et al., 2017
How do treatments for epilepsy in young children impact on these comorbidities?

- **Developmental / Cognitive Outcomes**
 - Surgery
 - Ketogenic diet
 - Medical treatment of infantile spasms

- **Psychiatric / behavioural outcomes**
 - Surgery
<table>
<thead>
<tr>
<th></th>
<th>Median (months)</th>
<th>Range (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at Preoperative assessment</td>
<td>12</td>
<td>3.3 – 33.1</td>
</tr>
<tr>
<td>Age at Surgery</td>
<td>14</td>
<td>3 - 34</td>
</tr>
<tr>
<td>Age at Postoperative assessment</td>
<td>24</td>
<td>10 - 53</td>
</tr>
</tbody>
</table>

Loddenkemper et al., 2007
Cleveland Clinic
Surgery < 3 years of age

<table>
<thead>
<tr>
<th></th>
<th>Preoperative</th>
<th>Postoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median DQ</td>
<td>37</td>
<td>49</td>
</tr>
<tr>
<td>DQ < 70</td>
<td>91 %</td>
<td>75 %</td>
</tr>
</tbody>
</table>

Mean DQ in typically developing children = 100

Decline in DQ more likely in children with preoperative DQ > 50 (75% vs. 6%)

Loddenkemper et al., 2007
Seizure and Surgical Variables

- Not associated with postoperative development
 - Pre- and post-operative seizure frequency
 - Post-operative seizure freedom
 - Change in AEDs
 - Side of surgery
 - Type of resection
 - Pathology

Loddenkemper et al., 2007 – Cleveland Clinic
Timing of Surgery

Younger age at time of surgery correlated with improvement in DQ

Loddenkemper et al., 2007 – Cleveland Clinic
UCLA: Surgery for Symptomatic Infant-onset Epileptic Encephalopathy

<table>
<thead>
<tr>
<th></th>
<th>Active IS</th>
<th>Treated IS</th>
<th>No history of IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at seizure onset (years)</td>
<td>0.2 ± 0.2</td>
<td>0.2 ± 0.3</td>
<td>0.4 ± 0.3</td>
</tr>
<tr>
<td>Age at surgery (years)</td>
<td>1.2 ± 1</td>
<td>3.3 ± 3.4</td>
<td>5.0 ± 4.3</td>
</tr>
<tr>
<td>Onset to surgery (years)</td>
<td>1.1 ± 0.9</td>
<td>3.0 ± 3.4</td>
<td>4.6 ± 4.1</td>
</tr>
</tbody>
</table>

Jonas et al., 2005
Early Surgery: Epileptic Encephalopathy

Outcome: Adaptive Behaviour
Mean Follow-Up: 1.8 years

- Active IS
- Successful Treatment
- No Hx IS
- Typical Development

Jones et al., 2005 - UCLA
Effect of Seizures

Jonas et al., 2005 - UCLA
Surgery ≤ 7 years: Bethel

<table>
<thead>
<tr>
<th></th>
<th>N = 50</th>
<th>Mean (SD)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at seizure onset</td>
<td>14 months (1.14)</td>
<td>1 – 52 months</td>
<td></td>
</tr>
<tr>
<td>Age at surgery</td>
<td>4.99 years (1.0)</td>
<td>3 – 7 years</td>
<td></td>
</tr>
<tr>
<td>Duration of epilepsy</td>
<td>3.77 years (1.41)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>before surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Freitag & Tuxhorn, 2005 - Bethel
FIG. 1. Preoperative cognitive function compared to normal distribution.

Freitag & Tuxhorn, 2005 - Bethel
Cognitive Outcomes

<table>
<thead>
<tr>
<th>Length of Follow-Up</th>
<th>6 – 12 mos (n = 50)</th>
<th>2 - 3 years (n = 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged</td>
<td>82 %</td>
<td>72 %</td>
</tr>
<tr>
<td>Gain</td>
<td>9 %</td>
<td>22.5 %</td>
</tr>
<tr>
<td>Loss</td>
<td>9 %</td>
<td>4.5 %</td>
</tr>
</tbody>
</table>

Freitag & Tuxhorn, 2005 - Bethel
Cognitive gains seen almost exclusively in seizure-free children, but so were cognitive losses.

Freitag & Tuxhorn, 2005 - Bethel
Ketogenic Diet

- Largely anecdotal evidence and parent report
- Improved alertness, cognitive function, behaviour
- Improvement in sleep may contribute to improvement in alertness

Hallbrook, 2011; Ijff et al., 2016)
Treatment for IS: 4 yr outcomes

<table>
<thead>
<tr>
<th></th>
<th>Hormone Therapy</th>
<th>Vigabatrin</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cases N = 77</td>
<td>Median: 60 Quartile (42,97)</td>
<td>Median: 50 Quartile (36, 67)</td>
</tr>
</tbody>
</table>

Epilepsy outcome not affected by type of treatment

Earlier initiation of treatment → better developmental outcomes

UKISS: Darke et al., 2010
Treatment for IS: 4 yr outcomes

<table>
<thead>
<tr>
<th></th>
<th>Hormone Therapy</th>
<th>Vigabatrin</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cases N = 77</td>
<td>Median: 60</td>
<td>Median: 50</td>
</tr>
<tr>
<td></td>
<td>Quartile (42,97)</td>
<td>Quartile (36, 67)</td>
</tr>
<tr>
<td>No Identified Etiology N = 37</td>
<td>Median: 96</td>
<td>Median: 63</td>
</tr>
<tr>
<td></td>
<td>Quartile (52,102)</td>
<td>Quartile (37, 92)</td>
</tr>
</tbody>
</table>

UKISS: Darke et al., 2010
Outcome of ASD in Epilepsy

- Independent of epilepsy outcome
- Depends on early, intensive intervention
- Cognitive impairment worse in ASD + epilepsy than ASD alone

(Danielsson et al., 2005; Nabbout et al., 2017)
IS: Developmental Outcome by Autism Status

Bitton et al., Epilepsia, 56(6):856–863, 2015
Epilepsy Surgery: Psychiatric Outcomes

- Assessed before & 2 years after surgery

Prior to surgery:
- 14/24 had psychiatric diagnosis (7 > 1)
- Most common: PDD and ADHD
- Only 4 had been diagnosed prior to surgical workup

Follow-up
- 16/24 had psychiatric diagnosis (11 > 1)
- New cases of anxiety and depressive disorders

Danielsson et al., 2002
Epilepsy Surgery: ASD Outcomes

- 5 children with ASD
 - 2 mild ID, 3 severe ID
 - 3 hyperactive

- 2 years after surgery:
 - Diagnoses persisted
 - Some improvement in severity of symptoms in 3

Danielsson et al., 2009
Temporal lobectomy in childhood: Great Ormond Street Series

Percent with diagnosis

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Pre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pervasive Developmental Disorder</td>
<td>38</td>
</tr>
<tr>
<td>Attention Deficit Disorder</td>
<td>23</td>
</tr>
<tr>
<td>Oppositional Defiant/Conduct Disorder</td>
<td>23</td>
</tr>
<tr>
<td>Other Disruptive Behaviour Disorder</td>
<td>42</td>
</tr>
<tr>
<td>Emotional Disorder</td>
<td>8</td>
</tr>
</tbody>
</table>
Temporal lobectomy in childhood: Great Ormond Street Series

Percent with diagnosis

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pervasive Developmental Disorder</td>
<td>38</td>
<td>37</td>
</tr>
<tr>
<td>Attention Deficit Disorder</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Oppositional Defiant/Conduct Disorder</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Other Disruptive Behaviour Disorder</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td>Emotional Disorder</td>
<td>8</td>
<td>21</td>
</tr>
</tbody>
</table>
Conclusions

- Treatment of epilepsy itself may not always result in large changes in children’s developmental, cognitive, psychiatric and QOL outcomes
- Early treatment is important
- Does treatment from epilepsy prevent worsening?
- Many psychiatric comorbidities go unrecognized – please screen your patients!
- Need to direct treatment at the comorbidities themselves
Acknowledgements

The Epilepsy Team at SickKids

Elysa Widjaja

Klajdi Puka

Lauryn Conway

The Ontario Mental Health Foundation
La Fondation ontarienne de la santé mentale

CIHR IRSC

Ontario Brain Institute